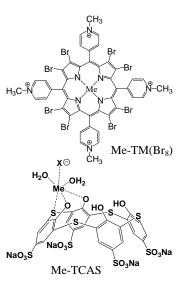
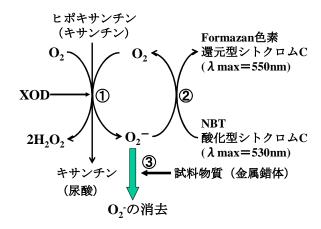
疾病と関連する活性酸素を消去する金属錯体の開発とその応用


理学研究科 生物化学専攻 生物無機·植物生理研究室

〇米田健太, 猪口雅彦, 尾堂順一

Keywords:金属錯体,活性酸素,スーパーオキシドジスムターゼ(SOD)


1. 研究目的

体内に取り込まれた酸素(O_2)は、一重項酸素(1O_2)、スーパーオキシド(O_2)、過酸化水素(H_2O_2)やヒドロキシラジカル(\cdot OH)などの活性酸素に変化して、腫瘍、心筋梗塞、糖尿病や老化などの原因となることが知られている。従って、活性酸素を消去する化合物(例えば、ワインに含まれているポリフェノール類)はこれらの病気や老化の予防に役立つので、特に興味が持たれている。本研究では、スーパーオキシド(O_2)を消去する金属錯体の開発を目的とした。動植物には O_2 を消去する酵素(Cu^{2+} , Zn^{2+} -SOD, Fe^{3+} -SOD 及び Mn^{3+} -SOD)が存在して、 O_2 の障害を防いでいることに着目して、右図に示す Me-TM(Br_8)及び Me-TCAS による O_2 -の消去作用を検討した。

2. 実験の特徴と概要

 O_2 の消去作用はシトクロム C (CytC) 法及び NBT 法を用いて評価した。すなわち、キサンチンオキシダーゼ (XOD) の添加で生成する O_2 による CytC 及び NBT の還元を 50%阻害するのに必要な金属錯体の濃度(IC_{50})により評価した。 IC_{50} が小さい程、 O_2 消去作用が強い事を示している。

Me-TCAS では Mn^{3+} -及び Fe^{3+} -TCAS が、 $Me\text{-TM}(Br_8)$ では、特に Mn^{2+} -及び Fe^{3+} -TM (Br_8) が強い O_2 ⁻消去作用を示す事がわかった。

- ①ヒポキサンチンまたはキサンチンに XOD を作用させると O_2 が生成する。
- ②生成した O_2 によりシトクロム c または NBT が還元されてできた反応生成物を測定して、系中の O_2 を定量する。
- ③試料物質の添加により O_2 が消去される。

NBT法		CytC法	
試料物質	IC ₅₀ (μM)	試料物質	IC ₅₀ (μM)
Fe ³⁺ -TCAS	4.6	Mn ²⁺ -TM(Br ₈)	0.09
Mn ³⁺ -TCAS	7.8	Fe^{3+} - $TM(Br_8)$	0.13
Mn ²⁺ -TCAS	28.0	$\mathrm{Co^{3+}\text{-}TM}(\mathrm{Br_8})$	0.38
Cu ²⁺ -TCAS	50.0	Cu^{2+} - $TM(Br_8)$	1.09
タンニン	6.50	タンニン	8.63
カテキン	7.70	クエルセチン	6.23

3. 応用の可能性

検討した金属錯体の中で、特に Mn^{2+} -及び Fe^{3+} - $TM(Br_8)$ が強い O_2 消去作用を持つことが確認された。しかも、タンニンやクエルセチンなどのポリフェノール類の持つ O_2 消去作用よりもかなり強いことを明らかにした。従って、この Me- $TM(Br_8)$ の結果を基にして、活性酸素を原因とする病気に対する新しい医薬品の開発への応用が期待できる。

連絡先 Tel: 086-256-9429 E-mail: odo@dbc.ous.ac.jp