-
理学部 応用数学科
- 教授
渡 邊 道 之
- 研究分野
数学、解析学、数理物理学
- キーワード
偏微分方程式論、散乱理論、逆問題
- 研 究
テーマ -
- 偏微分方程式の解の一部の情報から方程式の未知係数を逆算する研究
- 非線形波動と量子力学における基礎方程式との関連性
- 量子力学の散乱理論と地震波の弾性波動方程式の関連性 など
研究活動の概要逆問題は、観測された現象や結果から直接的には観測できない原因や未知の物理的特性を推定する問題です。例えば、地震波のデータから地下構造や地震源の特性を推定する問題や、散乱粒子の振る舞いから原子や分子の配列構造に依存するポテンシャルを決定する問題が逆問題の例です。
これらの問題は、偏微分方程式を用いて数学的に定式化することができます。未知の物理的特性は、方程式の係数などで表現されます。逆問題の数学的解析では、方程式の解の部分的情報から方程式の未知の係数などを逆算する手法を開発し、その手法の解析的性質を調べることが課題となります。
本研究室では、量子力学における散乱の逆問題と非線形波動との関連性、さらに量子力学の散乱理論と地震波の弾性方程式との関連性について研究しています。散乱理論は、入射波が物体やポテンシャルによって散乱され、散乱波が生成される現象を記述する数学的な枠組みです。一方、地震波の弾性波動方程式は、地震や地下の構造物によって散乱される波動現象を記述します。これらの現象は、数学的には類似しているため、散乱理論の手法を地震波の研究に応用することができます。このような研究が進むことで、地震波の解析や予測が向上し、地球の内部構造の解明や地下資源の探索、津波の被害制御などの応用が可能になります。
数学的手法や解析を通じて、量子力学の散乱や非線形波動、地震波などの異なる現象間の関連性を明らかにすることは、新たな知見をもたらし、応用分野においても有益な成果を生むことが期待されます。異なる分野や現象の間に存在する数学的なつながりを見出し、その理解を深めることは数学研究の魅力でもあります。- 希望する
連携内容 -
-
理学部 基礎理学科
- 教授
東 村 秀 之
- 研究分野
有機化学、高分子化学、触媒化学
- キーワード
芳香族ポリマー、レドックス触媒
- 研 究
テーマ -
- 社会に役立つ新規な有機材料の開発
- ①次世代6G用高速通信材料の開発
- ②再生可能エネルギーによるグリーン水素の製造
- ③リチウムイオン二次電池の超高容量化
研究活動の概要①次世代6G用高速通信材料の開発
人工酵素触媒を用いる環境に優しい製法で、全芳香族炭化水素系として世界最小の誘電率をもつ新規ポリマーを見出しており、全自動運転を可能にする高速通信材料に向けて開発しています。②再生可能エネルギーによるグリーン水素製造
太陽光により水を分解できる人工光合成触媒や、再生可能エネルギーで水を電気分解する材料など、化石燃料を用いないグリーン水素を製造する触媒&材料を開発しています。③リチウムイオン二次電池の超高容量化
EVの航続距離を長くして普及を促進することを目的とし、リチウムイオン二次電池の正極材料を軽量&高容量にし、重量エネルギー密度の大幅向上を目指しています。- 希望する
連携内容 -
- 低誘電絶縁材料、二次電池正極材料、エネルギー関連触媒
- (国内外特許250件を取得してきた経験を活かし、有機材料であれば連携可能)
-
理学部 基礎理学科
- 准教授
田 邉 洋 一
- 研究分野
ナノ構造物理、固体物理
- キーワード
グラフェン、3次元曲面
- 研 究
テーマ -
- 3Dグラフェンの新奇物性の開拓
- グラフェン3次元曲面への元素置換を利用した複合機能開拓
研究活動の概要炭素の原子層であるグラフェンを3次元の滑らかな曲面を利用して立体化する(3Dグラフェン)と、単位射影底面積あたりのグラフェンの光吸収や電気伝導度といった材料性能が増幅されることに加えて、曲面に由来した新しい物性が現れることが期待されています。我々は、3Dグラフェンを舞台として、曲面を流れる電子の基本的な物性の開拓と、元素置換による曲面の局所変形によって現れる狭い領域に閉じ込められた電子(局在電子)と動き回る電子(遍歴電子)の性質を利用することで、電極触媒や熱電材料として利用できる物質の探索を行っています。
- 希望する
連携内容 -
- 炭素材料の物性評価
-
理学部 基礎理学科
- 准教授
新 原 隆 史
- 研究分野
隕石学、アストロバイオロジー、鉱物学、岩石学、宇宙化学
- キーワード
太陽系、隕石、衝撃変成
- 研 究
テーマ -
- 初期太陽系の物質進化
- 火星での水-岩石反応
- 太陽系天体の衝突進化史 など
研究活動の概要約46億年前から現在までの太陽系の形成進化史の解明を目指し、特に隕石試料の分析を行っています。この研究では研磨試料の顕微鏡観察から始まり、電子顕微鏡による微細構造の観察、電子線プローブマイクロアナライザー(EPMA)による微小領域での化学組成分析、顕微ラマン分光法を用いた鉱物結晶の解析などを行っています。研究対象は地球を含む太陽系天体すべてです。また得られた知見をもとに、深宇宙探査計画への参画や、探査機の試験に用いる模擬物質の開発も行っています。また宇宙物質に関連した展示・講演も行っています。
- 希望する
連携内容 -
- 岩石・鉱物についての微小領域の分析
- 宇宙物質科学研究の全般
- 展示・講演活動 など
-
理学部 物理学科
- 教授
今 井 剛 樹
- 研究分野
物性理論
- キーワード
トポロジカル物質、強相関電子系、第一原理計算
- 研 究
テーマ -
- 時間反転対称性を破る新奇トポロジカル超伝導体の探索・物性評価
- ヘテロ構造界面および超格子における磁気的性質
研究活動の概要トポロジー(位相幾何学)は対象を連続変形しても保たれる性質を扱う数学の分野であり、保持する穴の数(トポロジカル数)によって対象を分類する場合、ドーナツとマグカップは等価なものになります。物質中の電子の波動関数がこのようなトポロジカル数で特徴づけられる”トポロジカル物質”では、試料端近傍で電子が極めて高速で動き回る、という特殊な状況が実現します。通常の電気伝導とは異なり、結晶中の欠陥や混入した不純物原子などの影響を受けにくいことから、トポロジカル物質は超高速コンピュータや省電力デバイスに向けた次世代高機能材料として期待を集めています。
本研究室ではデバイス設計・開発の基盤となるトポロジカル物質、特にトポロジカル超伝導体に注目し、その基礎物性を明らかにすべく、出現条件やその特異な基底状態などに対し、多体電子論および第一原理計算手法を活用した微視的観点からの解析を行っています。
- 希望する
連携内容 -
- 第一原理計算手法を活用した物性評価
- 量子多体問題の解析
-
理学部 物理学科
- 教授
山 本 薫
- 研究分野
機能性有機固体
- キーワード
有機伝導体、強誘電体、顕微分光、赤外・ラマン分光
- 研 究
テーマ -
- 有機伝導体の研究
- 電子型強誘電体の研究
研究活動の概要有機伝導体の伝導電子は量子論的な波動と古典的な粒子の中間的な振る舞いを示し,様々な異常特性を引き起こします。我々はこの分子性化合物から,伝導電子が粒子として振る舞って結晶格子をつくり,巨視的な電気分極を発生する物質を探索しています。電気分極に参加している電子は外部電場と強く相互作用するので,高速なスイッチや,光-電変換材料としての応用が期待できるでしょう。実験手段としては,赤外・ラマン分光による分子の局所構造解析や,非線形光学効果,円二色性観測,熱電変換測定等を適宜選択しています。
- 希望する
連携内容 -
- 光学材料
- 有機薄膜材料
- 分光計測
- 顕微観測
-
理学部 化学科
- 教授
岩 永 哲 夫
- 研究分野
構造有機化学,超分子化学,有機材料化学
- キーワード
有機合成,蛍光物質,有機機能性材料
- 研 究
テーマ -
- 新規な電子構造を持つパイ共役系分子の開発
- 芳香族ビスイミドを組み込んだドナー/アクセプター型分子の開発
- 有機系太陽電池材料の開発
研究活動の概要比較的取り扱いのしやすい汎用元素(C、H、N、O、S)から構成される有機分子を設計し、有機太陽電池など機能性材料に利用できる分子の開発が広く行われている。このような分子を開発するため に、我々は芳香族ビスイミドを基盤とした分子を設計し、置換基が持つ特異な性質を利用して化合物の研究を行っている。現在、成熟した有機合成化学の手法を利用して、汎用元素の一つで ある窒素をパイ共役系ユニットに組み込んだ新しい構造やその構造に基づいた機能をもつ分子の合成を目指 している。また、それらパイ共役系ユニットを集積させて、よく光る物質を構築したり、太陽光から電気へ変換する効率が高い有機機能性材料を開発することを目指して研究を行っている。
- 希望する
連携内容 -
- 有機太陽電池や有機半導体材料の開発
- 反応効率が高い有機合成法の開発 など
-
理学部 化学科
- 教授
満 身 稔
- 研究分野
錯体化学、固体化学
- キーワード
可視光駆動型レドックス触媒,光水素製造触媒,光二酸化炭素還元触媒,多孔性配位高分子、ポルフィリン化学、混合原子価錯体、磁性体、誘電体、伝導体
- 研 究
テーマ -
- 光水素製造や光二酸化炭素還元が可能な可視光駆動型レドックス触媒の開発
- レドックス活性な架橋配位子を用いた配位高分子に基づく複合機能性材料の開発
- 部分酸化型一次元複核白金錯体に基づく一次元d電子系金属の開発
研究活動の概要金属錯体は,中心金属イオンの選択とそれを取り囲む有機π電子系配位子の設計を適切に行うことにより,有機化合物や無機化合物だけでは得られない機能や物性を発現することが可能です。この錯体の特徴を利用すれば,太陽光の効果的な光捕集とそのエネルギーを利用したさまざまな触媒反応が期待されます。そこで本研究室では,可視光の捕集と様々な反応の触媒作用が可能な金属ポルフィリン錯体を用いて,光水素製造や二酸化炭素還元が可能な可視光駆動型レドックス触媒の開発に取り組んでいます。また,機能・物性を目指した研究では,酸化還元活性な配位子を用いて,混合原子価状態に基づくユニークな磁性や誘電性を示す配位高分子の開発を行っています。さらに,低温まで安定な金属状態を示す部分酸化型一次元複核白金錯体に基づく一次元d電子系金属の開発を行っています。
- 希望する
連携内容 -
- 可視光駆動型レドックス触媒を用いた光水素製造や光二酸化炭素還元
- 金属錯体全般 など
-
理学部 化学科
- 教授
山 田 真 路
- 研究分野
生体関連高分子化学
- キーワード
DNA、環境材料、エネルギー材料、バイオプラスチック
- 研 究
テーマ -
- DNAを用いた有害物質の除去
- 生体高分子を用いた環境材料の創製
- 生体高分子を用いた非水プロトン伝導体の創製
- サスティナブルな素材を用いたバイオプラスチックの創製 など
研究活動の概要我々の身近には、サケ白子由来のDNAや脱脂大豆由来のタンパク質、カニ・エビ殻由来のキチン・キトサン、牛骨・牛皮由来のコラーゲンなど産業廃棄物として処分されている生体高分子が多く存在している。このような生体高分子は石油のような枯渇性資源とは異なるためサスティナブルな資源と言い換えることも出る。そこで、このようなサスティナブルな資源を用い、有害な有機物質を集積する素材や有害な重金属イオンまたは有用なレアアースイオンを集積する素材、燃料電池用のプロトン伝導体、生分解性を有したバイオプラスチックなどの材料開発を行っている。
- 希望する
連携内容 -
- DNAを用いた環境浄化材の創製
- サスティナブルな資源を用いた素材の開発 など
-
理学部 化学科
- 准教授
大 坂 昇
- 研究分野
高分子構造物性(溶液、ゲル・エラストマー、プラスチック)
- キーワード
階層構造解析、各種散乱法(光・X線・中性子)
- 研 究
テーマ -
- 高分子の結晶構造制御と物性・機能発現
- ブレンド・コンポジット化による構造制御と物性向上
- 高分子と溶媒との微細な相互作用の解明
研究活動の概要日常生活に欠かせないプラスチックやゲル、エラストマーなどの高分子材料は、ナノからマイクロメートルに及ぶ階層構造を制御することで、意外なほど少種類の高分子から成り立っています。当研究室では、この階層構造を制御して優れた高分子材料を創製するだけでなく、顕微鏡や散乱、分光などの測定手法を駆使して、階層構造と物性・機能(熱・力学・電気・透明性)との関係解明を行い、地球に優しい材料の創製に貢献します。
- 希望する
連携内容 -
- 高分子材料の階層構造解析
- 構造と物性(力学、熱、透明性)との関係解明
- 構造制御やブレンド・複合化による高分子の新材料開発 など
-
理学部 化学科
- 准教授
若 松 寛
- 研究分野
有機化学、光化学、計算化学
- キーワード
機能性物質、光反応、電子移動、量子化学計算
- 研 究
テーマ -
- 光誘起電子移動を利用した新規光反応の開発と応用
- 量子化学計算による機能性有機分子の物性・反応性の解明
研究活動の概要光誘起電子移動を利用した新規光反応の開発とその機能性物質合成への応用を目的とした研究活動を行っています。現在主に、(1) アルカロイドの一種として天然に広く見られるインドール誘導体の光化学的合成法の開発、(2) キノンイミン型色素の効率的な光化学的合成法の開発と応用に取り組んでいます。これらの有機化合物は特徴的な酸化還元挙動を示すため、量子化学計算による物性予測の知見を取り込みながら、有機EL材料など機能性材料への応用を視野に入れて研究しています。
- 希望する
連携内容 -
- 光反応で機能が発現する有機化合物の開発
- 量子化学計算による機能性有機分子の物性・反応性の予測
-
理学部 動物学科
- 教授
村 上 貴 弘
- 研究分野
進化生態学、動物行動学
- キーワード
ハキリアリ、音声コミュニケーション、解剖、進化、生態、行動
- 研 究
テーマ -
- ハキリアリの音声コミュニケーションの進化
- ヒアリなどの侵略的外来生物の防除研究
- クロトゲアリとカイコによる新規生地シートの生成
研究活動の概要アリと会話をする。これが研究の最終的なゴールです。アリは、フェロモンなどの化学物質を用いて詳細なコミュニケーションを行っているものと考えられてきました。しかしながら、発音器官をこすり合わせることによって発する振動音も、コミュニケーションの重要なツールであることが我々の研究から明らかになりつつあります。音声解析や操作実験、そして解剖学的手法を用いた「耳」や「発音器官」の詳細な解析を行っています。この研究が進展することにより、ハキリアリのような甚大な被害を人間社会にもたらす昆虫の行動を制御することが可能になるものと考えています。
2017年に初めて日本国内に侵入が確認された侵略的外来生物のヒアリをはじめとした指定外来生物(アルゼンチンアリ、ハヤトゲフシアリ、アカカミアリ、コカミアリなど)の防除を福岡市、福岡県、環境省などさまざまなステークホルダーと協働して行ってきました。岡山県内では水島港でコカミアリの定着事例が報告されており、今後適切な防除・モニタリング作業を進めていきます。
再生能力の高いイモリやプラナリアを用いた再生関連遺伝子の染色体上へのFIAHマッピングを行ってきた。また再生能力の指標であるテロメア領域のマッピングも昆虫を含めて幅広く行っています。
沖縄に生息する、幼虫の出す糸で巣を紡ぐクロとげアリと6000年前に中国で家畜化されたカイコの出す絹糸を用いることにより、新規の生地シートを作成する研究をしています。この研究が発展すると第4の家畜化された昆虫としてクロトゲアリが人間と共生関係を結べるものと期待しています。- 希望する
連携内容 -
- 防虫・外来生物防除
- アリなどの昆虫の行動研究
- アリと会話をする機械の開発
- クロトゲアリの家畜化研究
-
工学部 機械システム工学科
- 准教授
岩 野 耕 治
- 研究分野
流体工学、機械工学、化学工学、環境工学
- キーワード
乱流、輸送現象、混相流
- 研 究
テーマ -
- 液相乱流噴流中の物質混合メカニズムの解明
- 風波気液界面を通しての運動量・熱・物質輸送のモデル化
- 乱流中の液滴や気泡の挙動の解明
- 流体摩擦抵抗低減デバイスの開発 など
研究活動の概要航空機や発電プラント、化学反応器といった様々な工業装置の性能を向上しエネルギーを有効利用するためには、空気や水の流れに伴う運動量・熱・物質の輸送のメカニズムを解明し、制御することが重要です。また、大気や海洋中の汚染物質の拡がりや気象現象を正確に予測するうえでも、流れによる輸送現象の理解は不可欠です。本研究室では、実験と数値シミュレーションを通して、工業装置や環境中における、流れによる輸送現象のメカニズム解明・予測・制御に取り組んでいます。具体的な研究テーマとしては、液相乱流噴流中での物質混合メカニズムの解明に向けた実験や数値シミュレーション、台風の予測精度向上に向けた風波気液界面を通しての運動量・熱・物質の輸送量の計測とモデル化、乱流中の液滴や気泡の挙動解明に向けた実験、流体摩擦抵抗低減に向けた新規デバイス(プラズマアクチュエータ)の開発などに取り組んでいます。
- 希望する
連携内容 -
- 工業装置や環境中における、流れによる輸送現象に関する研究全般
- 複雑流動場に対する新規流体計測手法の開発 など
-
工学部 機械システム工学科
- 准教授
近 藤 千 尋
- 研究分野
内燃機関、燃焼、計測、数値解析
- キーワード
エンジン、代替燃料、燃焼、排熱回収
- 研 究
テーマ -
- 廃棄物からのバイオディーゼル燃料製造およびその燃費・排気性能評価
- 構造物周りや筐体内部などのガス流速計測技術の開発
- 天然ガスエンジンの高効率化に関する研究
- エンジン内現象や燃費・排気性能の数値予測に関する研究
研究活動の概要バイオディーゼルは、動植物油を原料とした燃料で、地球温暖化物質の一つであるCO2の排出低減を図れる軽油の代わりとなる燃料油です。また、使用済天ぷら油などの、油分を含む廃液からの製造の可能性があり、資源の再利用法としても有望です。本研究室では、燃料製造技術や、それらをエンジンで利用した際の燃費/排気性能を評価しております。
また、代替燃料の一つである天然ガスを用いたエンジンの高効率化に関する研究も数値解析、燃焼試験の両面から実施しております。- 希望する
連携内容 -
- 油分を含む廃液からのエンジン用燃料製造技術の開発
- 高効率小型天然ガス(火花点火)エンジンの開発 など
- 物体表面付近のガス流の計測
-
工学部 機械システム工学科
- 准教授
寺 野 元 規
- 研究分野
生産加工学
- キーワード
塑性加工,結晶組織制御,微細加工,トライボロジー
- 研 究
テーマ -
- 局所的結晶組織制御法の開発
- CAE解析を援用した塑性加工品の高精度化
- 超微細加工による機能表面の効率的作製法の開発 など
研究活動の概要金属材料の機械的・電磁気的特性は材料内の結晶組織(方位や粒径)に強く影響されます。近年では、環境問題の観点から、合金化に依らない方法である塑性加工と熱処理を組み合わせた加工熱処理法により結晶組織が制御されています。その例として、圧延と熱処理の組み合わせにより、超微細粒鋼や電磁鋼板のような高機能材料が開発されています。これらは板全体で均一な特性を有する材料です。一方、本研究では、局所的に結晶組織を制御する方法を開発しています。例えば、バニシング加工と熱処理により素材表面の結晶組織を制御する方法を検討しています。
- 希望する
連携内容 -
- 局所的結晶組織制御
- 塑性加工CAE解析
- 超微細加工による機能表面の作製
-
工学部 機械システム工学科
- 講師
竹 村 明 洋
- 研究分野
塑性加工、材料組織、腐食・防食
- キーワード
機械加工、材料特性、生産性
- 研 究
テーマ -
- 機械加工による金属材料表面の化学特性変化
- 熱処理による金属材料の伝熱性向上
- 材料加工性の研究 など
研究活動の概要金属材料に対して叩く等の機械加工を行った場合、塑性変形が発生します。この時、金属の結晶構造にひずみが生じます。結晶構造のひずみは金属材料表面からの化学反応性を変化させます。この現象はメカノケミカル反応と呼ばれています。メカノケミカル反応を利用した機械加工と金属材料特性の関係性について研究を行っています。
- 希望する
連携内容 -
- 金属材料切削性向上の研究
- 材料の表面処理・表面加工による防食技術に関する研究
- 金属材料の生産性向上に関する研究 など
-
工学部 電気電子システム学科
- 教授
笠 展 幸
- 研究分野
パワーエレクトロニクス
- キーワード
モーター制御
- 研 究
テーマ -
- 交流電動機のセンサレス制御
- 電気自動車用主機モータの制御
- WBG半導体を使用したトラクションインバータ など
研究活動の概要電気自動車・住宅機器のモータードライブシステムの高性能化について研究しています。この研究は、学問的にはパワーエレクトニクスと呼ばれる電気電子分野の研究の一つです。具体的には、永久磁石を使ったモーターとそれを駆動するインバーターを制御するマイコン上の制御を研究し地球環境に負荷をかけない省エネルギーシステムを目指しています。
- 希望する
連携内容 -
- 製品プロトタイプの共同研究・開発
-
工学部 電気電子システム学科
- 教授
七 戸 希
- 研究分野
超電導工学、電気機器学
- キーワード
高温超電導、超電導応用
- 研 究
テーマ -
- 高温超電導変圧器を用いた小型・軽量の大電流電源
- 超電導機器の常電導転移検出・保護システム
- 重粒子線回転ガントリー など
研究活動の概要高温超電導線は、液体窒素温度にてその電気抵抗が消失し、銅線の100倍以上の電流密度を持つという特長を持っています。よって、この高温超電導線にて電気機器を作製すると、非常に効率が良く小型のものにすることができます。低炭素社会に貢献できる機器として、その実用化が期待されています。本研究室では、この高温超電導線を活用した電気機器の開発に関する研究をしています。例として、高温超電導線を巻線とした高温超電導変圧器を用いた小型・軽量の大電流電源の開発をしています。また、超電導機器の運転状態の健全性を監視するシステムの開発や超電導マグネットを用いた重粒子線回転ガントリーの開発などもしています。
- 希望する
連携内容 -
- 小型・軽量の大電流電源の開発
- 超電導機器の常電導転移検出・保護システムの開発
- その他超電導応用全般 など
-
工学部 電気電子システム学科
- 准教授
麻 原 寛 之
- 研究分野
ソフトコンピューティング、パワーエレクトロニクス
- キーワード
電力変換回路、クリーンエネルギー、非線形現象
- 研 究
テーマ -
- バッテリー給電用電力変換回路
- 電池交換不要な独立駆動電源
- スイッチ力学系の安定性解析
研究活動の概要- 希望する
連携内容 -
- エナジーハーベスティングデバイスを利用した電源開発
-
工学部 電気電子システム学科
- 講師
栗 田 満 史
- 研究分野
固体イオニクス
- キーワード
イオン伝導体、分光分析
- 研 究
テーマ -
- イオン伝導体に関する物性研究
研究活動の概要イオン伝導体の分光学的研究およびそれを用いた応用研究(イオニクス、フォトイオニクス、水素貯蔵材料等に関する研究)を行っています。
主な研究内容:
(1)超イオン伝導ガラス(SICG)の光学的特性(屈折率、光吸収)
(2)ペロブスカイト型プロトン伝導体の赤外吸収(OH結合)- 希望する
連携内容 -
- フォトイオニクスおよび水素貯蔵材料の研究開発